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High-precision measurements of the Nusselt number Nu as a function of the Rayleigh
number Ra have been made in water-filled 1m diameter cylindrical cells of aspect
ratio Γ = 0.67, 1, 2, 5, 10 and 20. The measurements were conducted at the Prandtl
number Pr ≈ 4 with Ra varying from 1 × 107 to 5 × 1012. When corrections for the
finite conductivity of the top and bottom plates are made, the estimates obtained of
Nu∞ for perfectly conducting plates may be described by a combination of two power
laws Nu∞ = C1(Γ )Raβ1 + C2(Γ )Raβ2 for all the aspect ratios. The fitted exponents
β1 = 0.211 and β2 = 0.332 are very close to 1/5 and 1/3 respectively, which have been
predicted by Grossmann & Lohse for the IIu and IVu regimes in their model. It is
also found that Nu∞ is generally smaller for larger Γ but the difference is only a few
percent and for Γ � 10 the asymptotic large-Γ behaviour may have been reached.

1. Introduction
Turbulent Rayleigh–Bénard convection has attracted much interest during the past

decade partly due to its relevance to astrophysical and geophysical phenomena such
as solar and mantle convections. A central issue in the study of turbulent thermal
convection is to understand how turbulent flows transport heat across the fluid
layer. A measure of heat transfer enhancement by convection is the Nusselt number
Nu = QL/λf �T , where Q is the heat flux density across a fluid layer of thermal
conductivity λf and height L with an imposed temperature difference �T . Two
parameters that enter the equations of motion for the temperature and velocity fields
are the Rayleigh number Ra =αg�T L3/νκ and Prandtl number Pr = ν/κ (g is the
gravitational acceleration, α the isobaric thermal expansion coefficient, ν kinematic
viscosity and κ thermal diffusivity of the fluid). To determine the Ra- and Pr-
dependence of Nu, many high-precision experimental and numerical studies have been
made in various fluids and cell geometries (Castaing et al. 1989; Kerr 1996; Xia &
Qiu 1999; Niemela et al. 2000; Ahlers & Xu 2001; Chavanne et al. 2001; Verzicco &
Camussi 2003). Various theoretical models have also been proposed (Castaing et al.
1989; Shraiman & Siggia 1990; Grossmann & Lohse 2000). Through these studies,
it is now possible to make detailed and high-precision comparison between theory
and experiment. An example is the excellent agreement between Nu measured by
Ahlers & Xu (2001) and Xia, Lam & Zhou (2002) and the model prediction by
Grossmann & Lohse (2001) over a wide range of Ra and Pr. The stringent test of
theory by experimental data in turn requires modifications and refinements of theory
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Figure 1. Schematic diagram of the convection cell. See text for description.

(Grossmann & Lohse 2001, 2003), and on the experimental side taking into account
previously neglected effects such as the coupling of sidewall conduction to the fluid
(Ahlers 2001; Roche et al. 2001; Verzicco 2002) and the finite thermal conductivity of
the top and bottom plates (Chaumat, Castaing & Chillà 2002; Verzicco 2004; Brown
et al. 2005). In any laboratory convection experiment a lateral sidewall is inevitably
present. This lateral confinement affects the velocity and temperature distributions in
the convection cell, so the aspect ratio Γ (lateral dimension of the fluid over its height)
enters the problem. In most experiments Γ is either around or not much larger than
unity, and previous studies of the effect of Γ on Nu were made over rather narrow
ranges of Γ so that no clear trend was established (Wu & Libchaber 1992; Xin &
Xia 1997). Recently the issue has been raised again (Niemela & Sreenivasan 2003;
Grossmann & Lohse 2003) and systematic measurements of Nu over a varying range
of Γ have just been made (Nikolaenko et al. 2005; Funfschilling et al. 2005). Still, few
experiments have been conducted at large Γ (� 10) while at the same time maintaining
sufficiently large Ra for the flow to be turbulent. In applications, turbulent convection
with a far away sidewall is more relevant to atmospheric and mantle convections,
which take place without the influence of a ‘sidewall’. To determine heat transport in
the asymptotic large-Γ limit, we have made high-precision measurements of Nu over
a wide range of aspect ratios in a 1m diameter cylinder filled with water.

2. Experimental apparatus and methods
2.1. The convection cell

Figure 1 is a cross-sectional view of our apparatus; only the left half is shown and
the drawing corresponds to Γ = 10 (not exactly to scale). The top (A) and bottom
(B) plates are made of pure copper 3 cm in thickness and 125 cm in diameter, and
their fluid-contact surfaces are plated with a thin layer of nickel. Four spiral channels
(X) of 2.8 cm in width and 1.5 cm in depth are machined into the top plate. The
separation between adjacent channels is 1.5 cm. The channels start from the edge of
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the plate at 3, 6, 9 and 12 o’clock positions respectively, and they end at opposite
positions near the centre (i.e. the channel that starts at 3 o’clock at the edge will
end at 9 o’clock near the centre, etc.). A silicon rubber sheet (not shown) and a
Plexiglas plate (C) are fixed on the top to form the cover and also to prevent interflow
between the channels. Each channel is connected to a separate refrigerated circulator
that has a cooling capacity of 5000 W at 20 ◦C and a temperature stability of 0.01 ◦C
(Haake N8-KT50W). The channels and the circulators are connected such that the
incoming cooler fluid and the outgoing warmer fluid in adjacent channels always flow
in opposite directions. The bottom plate is heated by 16 cast aluminium heaters (D)
of equal area and of thickness 1 cm, each having a resistance of 33 �. Four of these
heaters, each in the shape of a quadrant of radius 25 cm, are placed below the centre
of the plate. The other twelve, each in the shape of a sector with inner radius 25 cm
and outer radius 50 cm, surround the four quadrant ones. Six d.c. power supplies
(Xantrex DCR 300-20; max rating 6000 W, long-term stability 99.99%) were used to
power the heaters. The heaters are shielded from below by a layer of 15 cm thick
fibreglass (E) and then 4.2 cm thick nitrile rubber sheet (F). The thermal insulation
layers are covered by a plastic pan (G) from below. The cell’s sidewall (S) is a Plexiglas
tube of inner diameter 100 cm and thickness 2.5 cm. Two rubber o-rings embedded
in the grooves in each plate provide a seal between the sidewall and the plates. Six
stainless steel posts (H) hold the top and bottom plates together. They are insulated
from the plates by Teflon sleeves and washers (I) and rest on an annular steel plate
(J) which is supported by six adjustable legs on the floor. The flanges of the top and
bottom plates are insulated by 3 cm thick nitrile rubber sheet that is held in position
by C-shaped wooden clamps. The regions enclosed by dotted lines are filled with
multi-layers of styrofoam and nitrile rubber sheets.

Fifty-five calibrated thermistors (K, and all the white circles) are used to measure
temperatures at various places in the apparatus. As shown in figure 1, six of the
thermistors measure conductive heat leaks to the environment through the posts and
the plate: two mounted on the post/nut below and above the bottom plate; one on
the nut below the top plate; one on the side of the bottom plate; one on the outside
surface of the thermal insulation; and one between the nitrile rubber sheet and the
plastic pan below the bottom plate. The temperature of the top plate is measured
by 18 thermistors and that of the bottom by 31. They are distributed uniformly at
various radial and angular positions over the respective plates. These thermistors are
inserted into the bottom of drilled holes at a distance of 0.5 cm from the fluid-contact
surface. The holes were then filled by thermal conducting paste.

2.2. Experimental procedures

Six cylindrical tubes of heights 5.00, 10.10, 20.02, 49.0, 99.9 and 149.4 cm were used as
sidewalls in the experiment. The corresponding aspect ratios are 20.00, 9.90, 5.00, 2.04,
1.00 and 0.67, respectively. For ease of presentation, their nominal values Γ = 20, 10,
5, 2, 1, 0.67 will be used hereafter. Distilled and degassed water was used as convecting
fluid. Each time Ra is changed it takes about 3 to 10 h for the system to reach the
steady state and we typically wait for over 10 h to start the measurements. A typical
measurement is averaged over 10 h and more than 20 h for low �T (< 4 ◦C). No
long-term drift of the mean temperature in the plates was observed over the duration
of the measurement and the standard deviations were less than 0.5% of �T for all
measurements. In taking the temperature difference �T = Tb −Tt between the bottom
and top plates, a correction has been made for the temperature change between the
fluid-contact surface and the thermistor position. Figure 2 shows that the temperature
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Figure 2. Temperature variations over (a) the top and (b) bottom plates (Ra = 6.25 × 1010,
�T = 13.98 ◦C, Γ = 2). Ti is the time-averaged temperature of thermistor i in a plate and Tmean

the mean value of all thermistors in the same plate.

variation within both the top and bottom plates is less than 1%, which is rather small
for such a system. In general the temperature variation is smaller for smaller �T and
when the variation (Ti − Tmean) is normalized by �T it is less than 4% for all Ra
and Γ .

Heat current leaking through the bottom plate, the posts and sidewall is measured
based on the temperature of the monitoring thermistors. We find that leaks through
the posts and the bottom of the heater are negligible, both being 0.1% of the total
heat current. If Model 2 of wall–fluid heat exchange (Ahlers 2001) is used, the typical
leak through the sidewall is � 0.5%. As the model calculation used estimated sidewall
boundary layer thickness which introduces additional uncertainties, we considered
only pure conductive leakage through the sidewall which is � 0.2%. The largest
source of leakage is through the flange of the bottom plate due to its relatively large
surface area. As the relative share of the leakage in the total heat current decreases
with increasing �T , by working with sufficiently large �T we kept the total leaked
heat current from all sources to be less than 10% of the total applied heat current.
The errors in calculating the leaks come mainly from uncertainties in the thermal
conductivities of the insulating materials, which are estimated to be less than 5%.
This translates into an uncertainly of less than 0.5% in the measured Nu.

3. Results and discussion
Table 1 lists the measured Nu with corresponding values of �T , Pr and Ra for the

six values of Γ , which shows that most measurements were conducted at Pr ≈ 4.3
except three points which were obtained at Pr ≈ 5 (Γ = 10). To obtain estimates for
the ideal Nusselt number Nu∞ for perfectly conducting top and bottom plates from
the measured Nu, the effect of finite conductivity of the plates has to be corrected
for. The two may be related by Nu = f (X)Nu∞ (Verzicco 2004). Here f (X) is the
correction factor and X = Rf /Rp is the ratio of the thermal resistance of the fluid
Rf = L/(λf Nu) and that of the plate Rp = e/λp , where λp is the thermal conductivity
of the plate and e is the thickness of one plate (the average of the bottom plate
thickness and of the part of the top plate below the cooling channels is used here).
In making the finite conductivity correction, we adopted the empirical form of
f (X) = 1 − exp[−(aX)b] used by Brown et al. (2005), who approximated Nu∞ with a
single power law to fit their data. Based on their findings, we assume that the fitting
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No. �T Pr Ra Nu Nu∞ No. �T Pr Ra Nu Nu∞
(Γ = 0.67)

1 13.935 4.19 1.869 × 1012 671.43 693.36 9 6.734 4.33 8.557 × 1011 529.69 543.00
2 20.135 4.31 2.572 × 1012 738.11 764.76 10 30.236 4.31 4.550 × 1012 884.73 923.15
3 5.729 4.36 7.183 × 1011 497.70 509.34 11 31.867 3.92 4.057 × 1012 850.92 886.46
4 9.036 4.33 1.147 × 1012 577.68 593.70 12 4.904 4.32 6.186 × 1011 476.60 487.20
5 23.840 4.31 3.044 × 1012 778.69 808.40 13 36.838 4.04 5.253 × 1012 922.51 964.26
6 27.651 4.30 3.546 × 1012 818.68 851.57 14 10.260 4.31 1.313 × 1012 599.68 617.01
7 17.038 4.31 2.178 × 1012 702.56 726.64 15 7.901 4.33 1.004 × 1012 551.89 566.43
8 11.320 4.19 1.516 × 1012 630.73 649.99

(Γ = 1)
1 12.692 4.28 4.900 × 1011 433.20 446.82 11 4.126 4.33 1.565 × 1011 303.78 310.17
2 3.590 4.32 1.367 × 1011 291.06 296.88 12 30.333 3.93 1.354 × 1012 591.06 616.70
3 36.295 3.91 1.630 × 1012 623.39 651.90 13 16.508 4.04 7.025 × 1011 480.36 497.22
4 10.225 4.28 3.954 × 1011 400.93 412.51 14 15.497 4.28 5.997 × 1011 458.06 473.35
5 14.057 4.26 5.481 × 1011 445.76 460.21 15 27.666 4.29 1.065 × 1012 546.18 568.06
6 9.048 4.33 3.426 × 1011 385.54 396.20 16 7.868 4.33 2.984 × 1011 368.36 378.04
7 19.561 4.09 8.144 × 1011 504.42 523.05 17 4.831 4.30 1.852 × 1011 319.99 327.14
8 6.813 4.42 2.489 × 1011 349.76 358.43 18 29.097 4.08 1.220 × 1012 572.51 596.57
9 23.891 4.32 9.090 × 1011 520.69 540.57 19 11.531 4.27 4.473 × 1011 417.89 430.52

10 5.789 4.41 2.125 × 1011 332.34 340.11

(Γ = 2)
1 13.984 4.33 6.248 × 1010 221.40 228.67 9 4.141 4.32 1.860 × 1010 151.61 154.87
2 16.772 4.33 7.508 × 1010 234.55 242.75 10 7.774 4.31 3.506 × 1010 184.64 189.62
3 11.254 4.26 5.172 × 1010 209.28 215.76 11 5.681 4.32 2.548 × 1010 167.06 171.07
4 19.558 4.22 9.150 × 1010 249.09 258.35 12 3.611 4.35 1.603 × 1010 144.32 147.24
5 10.139 4.32 4.547 × 1010 199.97 205.85 13 37.450 4.28 1.711 × 1011 299.86 313.32
6 6.740 4.38 2.954 × 1010 175.46 179.92 14 27.382 4.33 1.227 × 1011 271.62 282.66
7 23.613 4.34 1.055 × 1011 259.11 269.15 15 42.550 4.12 2.070 × 1011 317.62 332.70
8 24.659 4.24 1.144 × 1011 266.01 276.60 16 31.301 4.29 1.424 × 1011 284.25 296.35

(Γ = 5)
1 13.542 4.31 4.150 × 109 93.00 96.14 8 36.343 4.27 1.134 × 1010 125.97 131.78
2 3.548 4.32 1.083 × 109 61.44 62.75 9 23.917 4.24 7.546 × 109 111.65 116.22
3 20.718 4.21 6.601 × 109 107.40 111.63 10 9.753 4.30 3.004 × 109 84.58 87.17
4 7.528 4.32 2.296 × 109 77.54 79.70 11 16.191 4.27 5.043 × 109 98.75 102.32
5 6.483 4.32 1.978 × 109 74.20 76.16 12 10.972 4.30 3.378 × 109 87.36 90.13
6 30.821 4.39 9.167 × 109 118.13 123.24 13 5.459 4.30 1.679 × 109 70.42 72.18
7 4.708 4.30 1.450 × 109 67.40 69.00

(Γ = 10)
1 3.458 4.40 1.318 × 108 32.47 33.20 6 34.102 3.93 1.572 × 109 67.31 70.62
2 6.286 4.43 2.368 × 108 38.90 39.99 7 3.847 5.25 1.062 × 108 30.84 31.50
3 13.180 4.41 5.001 × 108 48.58 50.30 8 1.906 5.54 4.730 × 107 24.60 25.00
4 19.028 4.54 6.869 × 108 53.32 55.40 9 2.634 5.48 6.684 × 107 27.00 27.50
5 25.934 4.35 1.009 × 109 59.19 61.76

(Γ = 20)
1 12.456 4.44 5.674 × 107 25.34 26.27 12 5.812 4.32 2.772 × 107 20.76 21.38
2 14.994 4.41 6.901 × 107 26.81 27.86 13 4.929 4.35 2.323 × 107 19.73 20.28
3 17.618 4.33 8.372 × 107 28.26 29.43 14 27.972 4.31 1.339 × 108 32.39 33.92
4 19.325 4.36 9.096 × 107 28.88 30.10 15 4.215 4.34 1.994 × 107 18.97 19.48
5 21.040 4.34 9.949 × 107 29.65 30.93 16 3.549 4.35 1.676 × 107 18.14 18.61
6 22.258 4.35 1.049 × 108 30.05 31.37 17 3.094 4.35 1.460 × 107 17.40 17.82
7 11.146 4.33 5.299 × 107 24.75 25.65 18 2.512 4.35 1.185 × 107 16.24 16.60
8 9.988 4.41 4.603 × 107 24.14 24.99 19 31.713 3.76 1.904 × 108 35.55 37.39
9 8.854 4.35 4.184 × 107 23.38 24.17 20 29.645 4.08 1.557 × 108 33.65 35.30

10 7.801 4.35 3.685 × 107 22.52 23.26 21 6.760 4.31 3.244 × 107 21.67 22.35
11 24.431 4.33 1.160 × 108 30.99 32.39

Table 1. Experimental results. The data are numbered in chronological order.
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Γ C1 C2 C ′
1 C ′

2

0.67 0.187 0.052 0.253 0.050
1 0.165 0.051 0.220 0.050
2 0.147 0.051 0.190 0.051
5 0.125 0.052 0.155 0.052

10 0.189 0.047 0.222 0.048
20 0.212 0.045 0.241 0.046

Table 2. Fitted parameters from equations (3.1) and (3.2).

parameters a and b are the same for the six values of Γ of our apparatus. Because
our data for all Γ span a wide range of Ra, it would be less justified to use a single
power law. So we adopted the following:

Nu = [C1(Γ )Raβ1 + C2(Γ )Raβ2 ]f (X) (3.1)

and fitted it to all data simultaneously. The fitting gives β1 = 0.211, β2 = 0.332,
a =0.987, b = 0.300, and six C1 and C2 which are listed in table 2. With the fitted
a and b, Nu∞ is readily obtained, as listed in table 1. An unexpected result is that
the two power-law exponents β1 and β2 are extremely close to the values of 1/5 and
1/3 predicted by Grossmann & Lohse (2001, referred to as GL) for the IIu and IVu

regimes respectively in their Ra−Pr phase diagram. In fact, the values of Ra and Pr
in our experiment fall inside the relevant regions of the GL phase diagram. To our
knowledge this is the first time a Ra1/5 power law has been found experimentally. This
prompts us to fit the composite power law to the obtained Nu∞ using the theoretical
exponents of GL:

Nu∞ = C ′
1(Γ )Ra1/5 + C ′

2(Γ )Ra1/3. (3.2)

It is seen from table 2 that the fitted C ′
2 are close to C2 while C ′

1 are somewhat different
from C1. This is probably because the fitted β2 from (3.1) is closer to the theoretical
value than β1 is, and that the ‘1/3’ component dominates in the total Nu (∼ 90% for
Γ =1). The fitted C ′

2 is very close to the value of 0.05 given in the GL model, which
is somewhat unexpected as the coefficients in the model are derived for the limiting
case of pure power laws. In figure 3 we plot Nu∞Ra−1/3 as a function of Ra for the six
sets of data, and the inset shows the uncompensated ones. It is seen that Nu∞ varies
very weakly over such a wide range of Γ , consistent with the findings of Nikolaenko
et al. (2005) and Funfschilling et al. (2005). The figure shows that data points for
Γ =0.67 lie slightly above those for Γ = 1, which in turn lie slightly above those for
Γ =2. The solid line represents (3.2) for Γ = 1. The dashed line is from the GL model
for Pr = 4.33 and Γ = 1. The coefficients in the model were determined by fitting
experimental data with Ra between 107 and 1011. It is seen that the model result,
when extrapolated to Ra greater than 1012, agrees excellently with the present data.
The dash-dotted line represents (3.2) with C ′

1 = 0.229 and C ′
2 = 0.0472 obtained by

fitting the Γ = 10 and 20 data together as a single set. It may be taken as representing
the (asymptotic) large-Γ behaviour. It is then seen that the Γ = 2 and 5 data lie in the
‘crossover’ region between the small- and the large-Γ behaviour. This may be related
to the crossover of the large-scale circulation (LSC) from single roll to multiple rolls,
as LSC is single roll for Γ =2 but has two rolls for Γ =5 (C. Sun, Y.-H. Cheung &
K.-Q. Xia, unpublished work).
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Γ = 2 data are not shown). NuRa−1/3 from Xia et al. (2002): �· , (Γ =1). NuRa−1/3 from Garon
& Goldstein (1973): �, (Γ = 2.5) and �, (Γ = 4.5). See text for the explanation of the lines.

In figure 4 we compare the present results with those from previous measurements
that were also conducted in cylindrical cells and at Pr ≈ 4. The lines are the same
as in figure 3 except that the solid line is now extrapolated further for comparison
with other Γ = 1 results. The data from Xia et al. (2002) (for small values of Ra)
are in excellent agreement with the extrapolation, considering that they have not
been corrected for the finite conductivity effect. Note that the last two points have
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Funfschilling et al. (2005): � (Γ =1); +, (Γ = 2); �, (Γ = 3) and ×, (Γ =6).

�T ≈ 40 ◦C and 58 ◦C respectively, so their large downward deviations may be a
manifestation of the non-Boussinesq effect. The Prandtl number for data from Garon
& Goldstein (1973) varied between 4.69 and 6.48 and no finite conductivity correction
had been made but they show similar trend to our large-Γ data with only a few
percent difference in magnitude. The Γ = 3 and 6 data from Funfschilling et al. (2005,
referred to as FBNA) seem to show the same crossover behaviour as ours, which
is consistent with the single-roll to multi-roll transition discussed above. Figure 4
also shows that the extrapolation of our Γ = 1 result agrees well with some of their
Γ =1 data, which were measured in three cells and the points that agree with the
extrapolation come mostly from their middle cell. For Ra � 2 × 108 the extrapolation
and the GL model diverge and both deviate from the data. A small but qualitative
difference between our data and those of FBNA is that their Γ =1 data (from the
large cell) have reached the 1/3 scaling regime at Ra 
 7 × 1010 while our data are
still in the crossover region between the 1/5 and 1/3 scalings (though a few of our
Γ =0.67 points of larger Ra may be regarded as already in the 1/3 regime).

To put the above difference in perspective, we plot in figure 5 compensated Nu vs.
Ra all of our data and those of FBNA, without the finite conductivity correction
being made for any of them. Though data from the two experiments with the same or
close values of Γ do not have overlap ranges in Ra, we can see that they roughly lie
on the same curve, i.e. the Γ = 2 and 3 data of FBNA and our Γ = 2 data, their Γ = 6
data and our Γ = 5 or 10 results. Although their Γ =1 data from the large cell show
a slightly different trend than ours, the average trend of their medium- and large-cell
results seems to be consistent with ours. For both experiments, the larger Γ results
lie consistently below those of smaller ones. A source of uncertainty in the measured
data could be the non-Boussinesq effect, which may be estimated by the deviation
from unity of the parameter xWL ( = (Tc − Tt )/(Tb − Tc)) (Wu & Libchaber 1991). By
placing a thermistor at a cell centre we measured Tc and thus xWL for certain values
of �T . For �T = 13.9, 19.6, 24.2, 31.8 and 36.3 ◦C, the values of xWL are 1.07, 1.08
1.15 1.17 and 1.20 respectively. It is seen that xWL does not increase very rapidly
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with �T . However, FBNA have argued that to strictly conform to the Boussinesq
condition �T should be limited to � 15 ◦C. It is seen from table 1 that some of our
data have �T much larger than 15 ◦C. For completeness all data are listed in the
table and are shown in the figures. On the other hand, for both the measured Nu and
Nu∞ the larger �T data show the same trend as those of small �T , which suggests
that some of our data being not strictly Boussinesq may not be a major factor for
the observed ‘non-1/3’ scaling. The near quantitative agreement between measured
Nu from the two experiments suggests that the difference in Nu∞ is probably due to
how the finite conductivity effect is corrected. The strength of the procedure used by
FBNA is that they used two sets of plates with different conductivities (Cu and Al)
so that the collapse of the two data sets provides a criterion for the quality of the
correction. For our procedure, we have to rely on the overlap between the various
data sets to achieve a self-consistent fit and a drawback is that it is not easy to
estimate the uncertainties of the fitting results. Thus we cannot rule out that our
procedure has under-corrected the finite conductivity effect for the large-Ra data and
that our data could well be consistent with those of FBNA if a correction procedure
similar to theirs is adopted. In this sense, our result that there is no pure 1/3 scaling
at the very high end of Ra should be viewed as tentative.

To summarize, our high-precision measurements of Nu in cylindrical cells with Γ

varying from 0.67 to 20 show that Nu depends very weakly on Γ , but for Γ ∼ 1 and
larger Nu is in general a decreasing function of Γ . Moreover, for Γ � 10 the asymptotic
large-Γ behaviour may have been reached. The measured data, over a much larger
range of Γ , show the same overall trend and have the same magnitudes as those
from earlier measurements by FBNA. When corrections for the finite conductivity
of the top and bottom plates are made, the estimates obtained of Nu∞ for perfectly
conducting plates can be described by a combination of two power laws, with the
fitted exponents β1 = 0.211 and β2 = 0.332 very close to 1/5 and 1/3 respective, which
have been predicted by Grossmann & Lohse for the IIu and IVu regimes in their
model. The experiment thus shows clearly that the change of local scaling exponent
with Ra is a result of regime crossover in the Ra–Pr phase plane. However, our data
do not show that a pure a 1/3 scaling regime has been reached in the present range of
Ra. To reconcile differences among the different experimental results a more detailed
understanding is required on the influence of the finite conductivity of the top and
bottom plates and an experiment that uses more than one set of plates of different
materials such as the one conducted by Brown et al. (2005) may be needed.
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